Abstract

Research Challenges in Veterinary Medicine Since 2006, the One Health Initiative (OHI)’s goal has been to demonstrate the inextricable link between humans, animals, and the environment. Certainly, the current global pandemic is a great testament to the ties between climate change, humans, and animals that OHI has been working to highlight. The rise of other zoonotic diseases (e.g., Hendra, and Nipah viruses) not only directly affect humans by transmitting disease but may also result in deep impacts on the food supply. Likewise, the rise of antibiotic resistance is a great threat affecting both human and animal lives. Policies have been put in place since the 2000s by the FDA and Health Canada to curve antibiotic overuse, especially in farming practices. Moreover, as the world’s human and animal populations grow, the demand for products rises, and with it the need for waste management and toxicology surveillance. The latter becomes ever-pressing in animal agriculture as production animals are often the first to show symptoms from toxin exposure. Finally, developed countries have seen the lifespan of companion animals significantly increase in the last decade alone, and the trend is expected to continue. With a lengthier lifespan, the propensity for neoplastic diseases and comorbidities also rises. Because the quality of owner care has drastically improved, there is a demand for better therapeutics and diagnostics, particularly those of non-invasive nature.

The Root Cause of These Challenges

However, the lack of commercially available and unvalidated antibody reagents across many species continues to undermine progress in veterinary medicine and research. With a limited understanding of other species’ immune systems, and few species having their whole genomes sequenced, it’s difficult to identify disease targets for biomarkers, let alone produce the antibody reagents necessary for the study of species. As such, model organisms are typically relied on, specifically mice, without little overlap or relevance to the target species. Current immunological reagents are discovered via methods reliant on nucleotide sequencing; however, the latter lack depth of knowledge of the circulating antibody repertoire due to missing relevant information on the primary amino acid structure that includes post-translation modifications data.

Next Gen Protein Sequencing Solution

The RepAb Solution Recombinant monoclonal antibodies (rAbs) derived from the target animal’s circulating antibodies through polyclonal antibody protein sequencing (REpAb) offer a solution to the aforementioned problems. Using Rapid Novor’s REpAb® Antibody Discovery Platform, pAb sequences can be mined from the naturally occurring humoral response. Such rAbs would be strictly defined and bear high fidelity. REpAb® could also be used to generate more precise animal-derived pAb positive controls for immunoassays such as anti-drug antibody assays needed to evaluate therapeutics for companion animals. With REpAb®’s technology, scientists can confidently rely on new and improved biomarkers, therapeutics, and diagnostics to ease the characterization of the adaptive immune response in all animals. Of interest to Reagent manufacturers and suppliers, human and veterinary drug development scientists, companion animal therapeutics, biologics and biosimilars development scientists, scientists performing pre-clinical assay development, immunotherapy researchers, oncolytic therapy development scientists, gene therapy development scientists, gene therapy, and oncolytic therapy researchers, CAR-T, and CAR-NK development scientists, multiple myeloma veterinary researchers, veterinary researchers, anti-drug antibody assay development scientists.

What You Will Learn

How Next Generation Protein Sequencing (NGPS) can be used in zoonotic infection control How clients have used our services in the past to curb antimicrobial resistance, and how a similar approach can be used for toxin surveillance

What a better anti-drug antibody solution would look like using REpAb How protein sequencing-based liquid biopsy screens can sensitively and specifically monitor neoplastic diseases like multiple myeloma in animals More about our NGPS workflow, and how it can complement existing pipelines in veterinary research

Speaker

Anthony Stajduhar

Director of International Business Development at Rapid Novor

Anthony works with leading researchers in antibody discovery and diagnostic development to understand their needs and ensure that REpAb® polyclonal antibody sequencing technology complements existing approaches and/or provides a complete end-to-end solution. Anthony is dedicated to solving challenging technical problems in the biomedical field while enriching the lives of humans around the world.

Newsletter for All Things Protein Sequencing

Breakthrough Bispecific Antibody R&D Techniques, Apr 20 11:00am EST.

Talk to Our Scientists.

We Have Sequenced 5000+ Antibodies and We Are Eager to Help You.

Through next generation protein sequencing, Rapid Novor enables reliable discovery and development of novel reagents, diagnostics, and therapeutics. Thanks to our Next Generation Protein Sequencing and antibody discovery services, researchers have furthered thousands of projects, patented antibody therapeutics, and developed the first recombinant polyclonal antibody diagnostics.

Talk to Our Scientists.

We Have Sequenced 5000+ Antibodies and We Are Eager to Help You.

Through next generation protein sequencing, Rapid Novor enables timely and reliable discovery and development of novel reagents, diagnostics, and therapeutics. Thanks to our Next Generation Protein Sequencing and antibody discovery services, researchers have furthered thousands of projects, patented antibody therapeutics, and ran the first recombinant polyclonal antibody diagnostics

Talk to our scientists. We have sequenced over 5000 antibodies and we are eager to help you.